What is Faraday's Law
Faraday's Law :
E = kBDV Where;
E = Induced Voltage,
B = Strength of the magentic field,
D = Conductor Width,
V = Velocity of the conductor.
The magnitude of the induced voltage E is directly proportional to the velocity of the conductor V, conductor width D, and the strength of the magnetic field B. Magnetic field coils placed on opposite sides of the pipe generate a magnetic field. As the conductive process liquid moves through the field with average velocity V, electrodes sense the induced voltage. The width of the conductor is represented by the distance between electrodes. An insulating liner prevents the signal from shorting to the pipe wall. The only variable in this application of Faraday's law is the velocity of the conductive liquid V because field strength is controlled constant and electrode spacing is fixed. Therefore, the output voltage E is directly proportional to liquid velocity, resulting in the linear output of a magnetic resulting in the linear output of a magnetic flowmeter.
E = kBDV Where;
E = Induced Voltage,
B = Strength of the magentic field,
D = Conductor Width,
V = Velocity of the conductor.
The magnitude of the induced voltage E is directly proportional to the velocity of the conductor V, conductor width D, and the strength of the magnetic field B. Magnetic field coils placed on opposite sides of the pipe generate a magnetic field. As the conductive process liquid moves through the field with average velocity V, electrodes sense the induced voltage. The width of the conductor is represented by the distance between electrodes. An insulating liner prevents the signal from shorting to the pipe wall. The only variable in this application of Faraday's law is the velocity of the conductive liquid V because field strength is controlled constant and electrode spacing is fixed. Therefore, the output voltage E is directly proportional to liquid velocity, resulting in the linear output of a magnetic resulting in the linear output of a magnetic flowmeter.